RADIATIVE HEAT FLUX ABSORBED BY A FLUIDIZED BED IN RADIATIVE HEATING

A. A. Sverdlov

UDC 536.3:66.096.5

An equation is derived for the heat flux absorbed by a fluidized bed in radiative heating.

Working from the analogy between the heating of a solid and the heating of a fluidized bed, we note that since the temperature drop over the height of the bed is small in the case of well-developed boiling, while λ_{ef} is always large [1, 2], the Biot number for the fluidized bed is usually less than 0.25, so that the fluidized bed can be classified as a "thin" object [3]. For thin objects and ordinary values of Δt_{extr} , the temperature drop within the object during the heating is slight, the object is heated uniformly over its thickness (over the height, in the case of a fluidized bed), and the internal heat transfer in many technological processes thus does not limit the heating process.*

In the radiative heating of a fluidized bed, the decisive role is thus played by radiative heat transfer between the radiator and the heat-absorbing surface (the surface of the fluidized bed).

* This assertion is correct except for the case of highly endothermic processes.

Fig. 1. Diagram used in deriving the equation for the resultant thermal radiation flux absorbed by the fluidized bed.

Gas Institute, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 28, No. 6, pp. 995-1002, June, 1975. Original article submitted June 10, 1974.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Fig. 2. Dependence of the resultant flux of thermal radiation (kW/m^2) absorbed by the fluidized bed on the emissivity of the radiator and of the surface of the fluidized bed. Dashed lines) flux calculated from Eq. (4); solid lines) flux calculated from Eq. (14a). 1, 2) Dependence on ε_{1} ; 3, 4) dependence on ε_{2} , for H/D=1.0 and 2.5, respectively.

In designing furnaces with radiative or convective-radiative heating of a bed, it is necessary to calculate the geometric dimensions of the furnace (the ratio of the furnace diameter to the distance from the radiating crown to the surface of the bed), under the assumption that all other parameters (the temperatures of the bed and the crown, the emissivity of the surfaces, etc.) are governed by the technology of the process. If the geometric dimensions of the furnace are chosen on the basis of structural considerations, it is necessary to carry out a verifying calculation to determine whether the necessary amount of heat can be transferred to the bed with the selected parameters of the technological process or if it is necessary to determine the temperature of the crown. We therefore need an equation which unambiguously gives us at least one of these parameters.

A furnace for the radiative heating of a fluidized bed is a closed system of several gray objects separated by a diathermic or absorbing medium which is in a state of radiative heat transfer. We need to find an equation for the resultant radiation flux absorbed by the surface of the fluidized bed. Let us determine the flux of thermal radiation from surface 1 to surface 2 (Fig. 1).

The amount of heat incident on surface 2 from surface 1 is given by the following equation for the case of a single reflection from each surface in the system:

$$Q_{\text{inc}_{1}}^{1-2} = Q_{1}\varphi_{12} - Q_{1}\varphi_{13}r_{3}\varphi_{32} - Q_{1}\varphi_{13}r_{3}\varphi_{31}r_{1}\varphi_{12} - Q_{1}\varphi_{12}r_{2}\varphi_{21}r_{1}\varphi_{12} + Q_{1}\varphi_{12}r_{2}\varphi_{23}r_{3}\varphi_{32}.$$
 (1)

where $Q_1 = E_1F_1$ is the heat flux associated with the radiation of surface 1 itself. Since the refractory lining materials used in practice (chamotte, Dianas brick, chrome-magnesite brick, high-alumina chamotte, etc.), as well as the fluidized beds, have a high emissivity ($\varepsilon = 0.8-0.85$), we can neglect the heat fluxes reflected from surfaces 1 and 2, corresponding to the third, fourth, and fifth terms in Eq. (1). We there-fore assume that the effective radiation of the crown and the surface of the fluidized bed is equal to the intrinsic radiation. Calculations show that with $\varepsilon_1 = \varepsilon_2 = 0.8$ the error of this assumption does not exceed 5% for small values of H/D (H is the distance from the crown to the surface of the bed, and D is the furnace diameter), and for the ratios H/D = 1.0-4.0 used in practice this error does not exceed 1-2%.

Then we have

$$Q_{\rm inc_1}^{\rm i-2} = E_1 F_1 (\varphi_{12} + \varphi_{13} \varphi_{32} r_3).$$

Surface 3, absorbing some of the radiant energy incident on it from surface 1, also radiates to surface 2. Using the assumption above, we can write the following equation for the flux of thermal radiation incident on surface 2 from surface 3, again for the case of single reflections:

$$Q_{inc_{1}}^{3-2} = E_{3}F_{3}(\varphi_{32} - \varphi_{33}\varphi_{32}r_{3})$$

Analogously, for the flux from surface 2 onto lateral surface 3, again for single reflections, we have

$$Q_{\rm inc.1}^{2-2} = E_2 F_2 \left(\varphi_{22} + \varphi_{23} \varphi_{32} r_3 \right).$$

Now taking into account n reflections of the energy from surface 3, we write the flux from surface 1 to surface 2 as

				e, == 0, 8			
		1,0	20985 22431 10346 10395	108954 107344 90917 91072	00701	22896 12334 12381	124357 128962 111594 112798
		6'0	19493 19874 10052 10194	104376 149738 90010 90971	01010	20871 20871 11234 11156	111495 117216 100671 101644
		0,8	17895 18597 9825 10032	99581 102457 89347 90598	11021	1,944 18076 9855 10032	99105 10245 89742 90678
<u>N/m² / m² /</u>	.), W/III ⁻	0,7	16378 17291 9563 9708	94664 100617 88683 90424		15058 16382 8485 8743	86671 92169 78394 79522
ng to [4] /	0 Eq. (14a	9'0	14782 16034 9295 9572	89677 97317 87699 89985		13381 14175 7349 7514	74298 79496 66973 68493
ix accordi	ccoramg u	0,5	13346 14624 9044 9299	85115 94134 86644 89515		11196 11748 6142 6291	62145 66534 55986 57148
sultant flu	ant tux a	0,4	11498 13329 8745 9085	80304 91397 84351 89125	5	8986 9477 4979 5052	49637 53541 44516 45817
SR	result	0,3	10916 11987 8554 8859	75512 88614 85514 88532		6686 7157 3677 3788	37191 40919 33424 34519
		0,2	8511 10615 8245 8599	70816 85972 84546 88647		4461 4812 2455 2528	24621 27218 22274 22219
		0,1	7140 9163 8040 8451	66906 83567 84126 87959		2258 2497 1223 1257	12315 13567 11134 111579
	2/2		1,0 2,5	1,0		1,0 2,5	1,0
	ç	2011. Q	0,8		•	0	
	т • с	i i	773	1373		773	1373
	20 F	4	573	973		573	673
T1. "K			1223	1673		1223	1673

TABLE 1. Resultant Flux of Thermal Radiation Absorbed by the Fluidized Bed

$$Q_{\rm inc}^{1-2} = E_1 F_1 \left(\varphi_{12} + \varphi_{13} r_3 \varphi_{32} + \varphi_{13} r_3 \varphi_{32} r_3 \varphi_{33} + \dots + \varphi_{13} r_3^n \varphi_{33}^{n-1} \varphi_{32} \right),$$

$$Q_{\rm inc}^{1-2} = E_1 F_1 \left[\varphi_{12} + \varphi_{13} \varphi_{32} \sum_{n=1}^{n=N} (\varphi_{33}^{n-1} r_3^n) \right].$$
(2)

Here $E_1F_1\varphi_{12}$ is the flux incident on surface 2 without reflections, and $E_1F_1\varphi_{13}\varphi_{32}\sum_{n=1}^{n=N} (\varphi_{33}^{n-1}r_3^n)$ is the flux from surface 1 to surface 2 as a result of the n-th reflection from surface 3 (N is an arbitrarily large number).

Analogously, we can write the flux which returns to surface 1 after the n-th reflection from surface 3:

$$Q_{inc}^{1-1} = \varphi_{13}\varphi_{31} \sum_{n=1}^{n=N} (\varphi_{33}^{n-1} r_{3}^{n}).$$

Part of the energy incident on surface 3 from surface 1 is absorbed by surface 3 in each reflection from it. This part of the energy is

$$Q_{abs}^{1-3} = E_1 F_1 \varphi_{13} (1-r_3) + E_1 F_1 \varphi_{13} r_2 \varphi_{33} (1-r_3) + \cdots + E_1 F_1 \varphi_{13} (1-r_3) \varphi_{33}^{n-1} r_3^n;$$

$$Q_{abs}^{1-3} = E_1 F_1 \varphi_{13} \frac{1-r_3}{r_3} \sum_{n=1}^{n=N} (\varphi_{33}^{n-1} r_3^n).$$

Defining

$$\frac{1-r_3}{r_3} = R_3$$

we have

$$Q_{abs}^{1-3} = E_1 F_1 \varphi_{13} R_3 \sum_{n=1}^{n=N} (\varphi_{33}^{n-1} r_3^n).$$

We obviously have

$$(Q_{inc}^{1-2} - Q_{1}\varphi_{12}) + Q_{inc}^{1-1} + Q_{abs}^{1-3} = Q_{1}\varphi_{13},$$

$$E_{1}F_{1}\varphi_{13}\varphi_{32}\sum_{n=1}^{n=N}(\varphi_{33}^{n-1}r_{3}^{n}) + E_{1}F_{1}\varphi_{13}\varphi_{31}\sum_{n=1}^{n=N}(\varphi_{33}^{n-1}r_{3}^{n}) + E_{1}F_{1}\varphi_{13}R_{3}\sum_{n=1}^{n=N}(\varphi_{33}^{n-1}r_{3}^{n}) = E_{1}F_{1}\varphi_{13}$$

and thus

$$\sum_{n=1}^{n=N} (\varphi_{33}^{n-1} r_3^n) = \frac{1}{\varphi_{32} + \varphi_{31} + R_3}$$
(3)

Substituting (3) into (2) and carrying out some simple manipulations, we find

$$Q_{\rm inc}^{1-2} = E_1 F_1 \left(\varphi_{12} + \frac{\varphi_{13} \varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3} \right). \tag{4}$$

The flux from surface 3 to surface 2 after the n-th reflection from surface 3 is

$$Q_{\rm inc}^{3-2} = E_3 F_3 \left(\varphi_{32} + \varphi_{33} r_3 \varphi_{32} + \varphi_{33} r_3 \varphi_{32} + \dots + \varphi_{32} \varphi_{33}^n r_3^n \right),$$

$$Q_{\rm inc}^{3-2} = E_3 F_3 \varphi_{32} \sum_{n=0}^{n=N} (\varphi_{33}^n r_3^n).$$
(5)

Analogously, the flux from surface 3 to surface 1, with the n-th reflection taken into account, is

$$Q_{\rm inc}^{3-1} = E_3 F_3 \varphi_{32} \sum_{n=0}^{n=N} (\varphi_{33}^n r_3^n).$$

715

The absorbed energy is

$$Q_{abs}^{3-3} = E_3 F_3 \varphi_{33} (1-r_3) + E_3 F_3 \varphi_{33} r_3 \varphi_{33} (1-r_3) + \cdots + E_3 F_3 (1-r_3) \varphi_{33}^n r_3^{n-1},$$

$$Q_{abs}^{3-3} = E_3 F_3 (1-r_3) \sum_{n=0}^{n=N} (\varphi_{33}^{n+1} r_3^n).$$

We note that

$$(1-r_3)\sum_{n=0}^{n=N}(\varphi_{33}^{n+1}r_3^n)=\left(\frac{1-r_3}{r_3}\right)r_3\varphi_{33}\sum_{n=0}^{n=N}(\varphi_{33}^n r_3^n).$$

Obviously, we have

$$Q_{\rm inc}^{3-2} + Q_{\rm inc}^{3-1} + Q_{\rm abs}^{3-3} = E_3 F_3$$

or

$$E_{3}F_{3}\varphi_{32}\sum_{n=0}^{n=N}(\varphi_{33}^{n}r_{3}^{n})+E_{3}F_{3}\varphi_{31}\sum_{n=0}^{n=N}(\varphi_{33}^{n}r_{3}^{n})+E_{3}F_{3}R_{3}r_{3}\varphi_{33}\sum_{n=0}^{n=N}(\varphi_{33}^{n}r_{3}^{n})=E_{3}F_{3},$$

and thus

$$\sum_{n=0}^{n=N} (\varphi_{33}^n r_3^n) = \frac{1}{\varphi_{32} + \varphi_{31} + R_3 r_3 \varphi_{33}}$$

We then have

$$Q_{\rm inc}^{3-2} = E_3 F_3 - \frac{\varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3 r_3 \varphi_{33}}$$
 (6)

The flux from surface 2 to surface 2 as a result of the n-th reflection from surface 3 is

$$Q_{\rm inc}^{2-2} = E_2 F_2 \varphi_{23} r_3 \varphi_{32} + E_2 F_2 \varphi_{23} r_3 \varphi_{33} r_3 \varphi_{32} [+ \cdots + E_2 F_2 \varphi_{33}^{n-1} r_3^n \varphi_{23} \varphi_{32}]$$

or

$$Q_{\rm inc}^{2-2} = E_2 F_2 \varphi_{23} \varphi_{32} \sum_{n=1}^{n=N} (\varphi_{33}^{n-1} r_3^n).$$
⁽⁷⁾

Analogously, the flux from surface 2 to surface 1 as a result of the n-th reflection from surface 3 is

$$Q_{\rm inc}^{2-1} = E_2 F_2 \varphi_{23} \varphi_{31} \sum_{n=1}^{n=N} (\varphi_{33}^{n-1} r_3^n).$$
(8)

The absorbed flux is

$$Q_{abs}^{2-3} = E_2 F_2 (1-r_3) \varphi_{23} + E_2 F_2 \varphi_{23} r_3 \varphi_{33} (1-r_3) + \dots + E_2 F_2 \varphi_{23} (1-r_3) \varphi_{33}^{n-1} r_3^{n-1}$$

or

$$Q_{abs}^{2-3} = E_2 F_2 \varphi_{23} R_3 \sum_{n=1}^{\infty} (\varphi_{33}^{n-1} r_3^n).$$

We obviously have

$$Q_{\rm inc}^{2-2} + Q_{\rm inc}^{2-1} + Q_{\rm abs}^{2-3} = E_2 F_2 \varphi_{23}.$$
 (10)

(9)

Substituting (7)-(9) into (10), and carrying out certain simplifications, we find

$$\sum_{n=1}^{n=N} \left(\varphi_{33}^{n-1} r_3^n \right) = \frac{1}{\varphi_{32} + \varphi_{31} + R_3} ,$$

and thus

$$Q_{\rm inc}^{2-2} = E_2 F_2 \frac{\varphi_{23}\varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3}$$

Taking into account the radiation from surface 2 to itself ($\varphi_{22} \neq 0$), we have

$$Q_{\rm inc}^{2-2} = E_2 F_2 \frac{\varphi_{22} + \varphi_{23} \varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3} \,. \tag{11}$$

Accordingly, the total heat flux incident on surface 2 as a result of radiative heat transfer in a system of three surfaces filled with a transparent medium, with the n-th reflection from the lateral surface taken into account, is

$$Q_{2 \text{ inc}} = Q_{\text{inc}}^{1-2} + Q_{\text{inc}}^{2-2} + Q_{\text{inc}}^{3-2}$$

$$Q_{2inc} = E_1 F_1 \left(\varphi_{12} + \frac{\varphi_{13} \varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3} \right) + E_2 F_2 \left(\varphi_{22} + \frac{\varphi_{23} \varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3} \right) + E_3 F_3 - \frac{\varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3 r_3 \varphi_{33}} .$$
(12)

Noting that the specific flux is $E_{2inc} = Q_{2inc}/F_2$, and that we have $d\varphi_{21}/\varphi_{12} = F_1/F_2$ and $\varphi_{23}/\varphi_{32} = F_3/F_2$, we find, from the reciprocity rule for angular coefficients,

$$E_{2_{R2}} = E_{1} \left(\varphi_{21} + \frac{\varphi_{21}}{\varphi_{12}} \cdot \frac{\varphi_{13}\varphi_{32}}{\varphi_{32} + \varphi_{31} + R_{3}} \right) + E_{2} \left(\varphi_{22} + \frac{\varphi_{23}\varphi_{32}}{\varphi_{32} + \varphi_{31} + R_{3}} \right) + E_{3} - \frac{\varphi_{23}}{\varphi_{32} + \varphi_{31} + R_{3}r_{3}\varphi_{33}}$$
(13)

The resultant flux at surface 2 is

$$E_{\rm R2} = E_{\rm 2inc} \varepsilon_2 - E_2$$

so we have

$$E_{\text{R2}} = \left[E_1 \left(\varphi_{12} + \frac{\varphi_{13}\varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3} + \frac{\varphi_{21}}{\varphi_{12}} \right) + E_2 \left(\varphi_{22} + \frac{\varphi_{23}\varphi_{32}}{\varphi_{32} + \varphi_{31} + R_3} \right) + E_3 - \frac{\varphi_{23}}{\varphi_{32} + \varphi_{31} + R_3 r_3 \varphi_{33}} \right] \varepsilon_2 - E_2.$$
 (14)
If

$$F_1 = F_2$$
, then $\varphi_{12} = \varphi_{21}$; $\varphi_{31} = \varphi_{32}$; $\varphi_{23} = \varphi_{13}$.

Assuming $\varphi_{22} = 0$, we find

$$E_{R^2} = \left[E_1 \left(\varphi_{12} - \frac{\varphi_{23} \varphi_{32}}{2\varphi_{32} + R_3} \right) - E_2 \frac{\varphi_{23} \varphi_{32}}{2\varphi_{32} + R_3} + E_3 \frac{\varphi_{23}}{2\varphi_{32} + R_3 r_3 \varphi_{33}} \right] \varepsilon_2 - E_2.$$
(14a)

If $r_3 = 1$, then $E_3 = 0$, and the equation for $E_{\mathbf{R}2}$ becomes

$$E_{R2} = \varepsilon_2 \left(E_1 \frac{1 + \varphi_{12}}{2} + E_2 \frac{\varphi_{23}\varphi_{32}}{2} \right) - E_2.$$
(14b)

If $\mathbf{r}_3 = 0$, then

$$E_{R_2} = \varepsilon_2 \left(E_1 \varphi_{12} - E_3 \varphi_{23} \right) - E_2.$$
 (14c)

We have thus derived quite simple equations for the specific flux of thermal radiation absorbed by the fluidized bed during radiative heating.

If the system is filled with an absorbing medium, its influence can be taken into account by a procedure analogous to that of [4].

It is interesting to compare the fluxes calculated from Eq. (14a) with those calculated from the equations of [4].

Table 1 shows the fluxes calculated from both equations for a system of a circular cylinder for the values $T_1 = 1223$ °K, $T_2 = 573$ °K, $T_3 = 773$ °K, and $\varepsilon_3 = 0.8$ for two values of H/D, 1.0 and 2.5; and for $T_1 = 1673$ °K, $T_2 = 973$ °K, and $T_3 = 1373$ °K, with the same values of H/D and with ε_1 and ε_2 varied from 0.1 to 1.0. Figure 2 shows a curve of the resultant heat flux as a function of the emissivity ε_1 and the emissivity of the heat-absorbing surface, ε_2 . The numerical value of the emissivity of the surface of a fluidized bed can be determined from the equation given in [5].

In conclusion, we should point out that the calculations carried out on the basis of these equations agree satisfactorily with the experimental data of [6-8]. For example, with $\varepsilon_1 = \varepsilon_3 = 0.8$, $\varepsilon_2 = 0.9$, $T_1 = 1223$ K, $T_2 = 575$ K, $T_3 = 773$ K, and H/D = 1.0 and 1.55, the specific fluxes found in the experiments of [8] are 22.6 and 14.7 kW/m², while those calculated from Eq. (14a) are 20.9 and 15.1 kW/m².

NOTATION

 $Q_{inc_{1}}^{i-k}$, flux of thermal radiation from surface i to surface k, with a single reflection from each surface in the system taken into account; Q_{inc}^{i-k} , the same, with an infinite number of reflections taken into account; φ_{ik} , angular coefficient from surface i to surface k; r_{i} , reflectivity of surface i; ε_{i} , emissivity of surface i; Q_{i} , heat flux of intrinsic radiation of surface i; E_{i} , intrinsic radiation of surface i; F_{i} , area of surface i.

LITERATURE CITED

- 1. L. K. Vasanova and N. I. Syromyatnikov, Khim. Prom-st', No. 11 (1963).
- 2. N. I. Syromyatnikov, L. K. Vasanova, and Yu. I. Shimanskii, in: Heat and Mass Transfer [in Russian], Vol. 3, Gosénergoizdat (1963).
- 3. G. P. Ivantsov, Works of the Scientific and Engineering Society Chernaya Metallurgiya [in Russian], Vol. 7, Metallurgizdat (1956).
- 4. D. V. Budrin, in: Heat Transfer and Fuel Economy in Metallurgical Furnaces. Works of the S. M. Kirov Ural Polytechnical Institute [in Russian] (1951).
- 5. O. O. Sverdlov, Dopovidi Akad. Nauk UkrSSR, No. 8 (1971).
- 6. A. A. Sverdlov and K. E. Makhorin, Khim. Prom-st, No. 7 (1968).
- 7. A. A. Sverdlov, K. E. Makhorin, A. M. Glukhomanyuk, B. A. Lipkind, G. L. Kustova, and A. V. Zykova, Ispol'zovanie Gaza v Narodnom Khozyaistve, No. 8 (1970).
- 8. A. A. Sverdlov, Khim. Prom-st', No. 1 (1974).