An equation is derived for the heat flux absorbed by a fluidized bed in radiative heating.
Working from the analogy between the heating of a solid and the heating of a fluidized bed, we note that since the temperature drop over the height of the bed is small in the case of well-developed boiling, while $\lambda_{\text {ef }}$ is always large [1,2], the Biot number for the fluidized bed is usually less than 0.25 , so that the fluidized bed can be classified as a "thin" object [3]. For thin objects and ordinary values of $\Delta t_{\text {extr }}$, the temperature drop within the object during the heating is slight, the object is heated uniformly over its thickness (over the height, in the case of a fluidized bed), and the internal heat transfer in many technological processes thus does not limit the heating process.*

In the radiative heating of a fluidized bed, the decisive role is thus played by radiative heat transfer between the radiator and the heat-absorbing surface (the surface of the fluidized bed).

* This assertion is correct except for the case of highly endothermic processes.

Fig. 1. Diagram used in deriving the equation for the resultant thermal radiation flux absorbed by the fluidized bed.

Gas Institute, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 28, No. 6, pp. 995-1002, June, 1975. Original article submitted June 10, 1974.
©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

Fig. 2. Dependence of the resultant flux of thermal radiation ($\mathrm{kW} / \mathrm{m}^{2}$) absorbed by the fluidized bed on the emissivity of the radiator and of the surface of the fluidized bed. Dashed lines) flux calculated from Eq. (4); solid lines) flux calculated from Eq. (14a). 1,2) Dependence on $\left.\varepsilon_{1} ; 3,4\right)$ dependence on ε_{2}, for $\mathrm{H} / \mathrm{D}=1.0$ and 2.5 , respectively.

In designing furnaces with radiative or convective-radiative heating of a bed, it is necessary to calculate the geometric dimensions of the furnace (the ratio of the furnace diameter to the distance from the radiating crown to the surface of the bed), under the assumption that all other parameters (the temperatures of the bed and the crown, the emissivity of the surfaces, etc.) are governed by the technology of the process. If the geometric dimensions of the furnace are chosen on the basis of structural considerations, it is necessary to carry out a verifying calculation to determine whether the necessary amount of heat can be transferred to the bed with the selected parameters of the technological process or if it is necessary to determine the temperature of the crown. We therefore need an equation which unambiguously gives us at least one of these parameters.

A furnace for the radiative heating of a fluidized bed is a closed system of several gray objects separated by a diathermic or absorbing medium which is in a state of radiative heat transfer. We need to find an equation for the resultant radiation flux absorbed by the surface of the fluidized bed. Let us determine the flux of thermal radiation from surface 1 to surface 2 (Fig. 1).

The amount of heat incident on surface 2 from surface 1 is given by the following equation for the case of a single reflection from each surface in the system:

$$
\begin{equation*}
Q_{\mathrm{inc}_{1}}^{1-2}=Q_{1} \varphi_{12}-Q_{1} \varphi_{13} r_{3} \varphi_{32}-Q_{1} \varphi_{13} r_{3} \varphi_{31} r_{1} \varphi_{12}-Q_{1} \varphi_{12} r_{2} \varphi_{21} r_{1} \varphi_{12}+Q_{1} \varphi_{12} r_{2} \varphi_{23} r_{3} \varphi_{32} \tag{1}
\end{equation*}
$$

where $Q_{1}=E_{1} F_{1}$ is the heat flux associated with the radiation of surface 1 itself. Since the refractory lining materials used in practice (chamotte, Dianas brick, chrome-magnesite brick, high-alumina chamotte, etc.), as well as the fluidized beds, have a high emissivity ($\varepsilon=0.8-0.85$), we can neglect the heat fluxes reflected from surfaces 1 and 2 , corresponding to the third, fourth, and fifth terms in Eq. (1). We therefore assume that the effective radiation of the crown and the surface of the fluidized bed is equal to the intrinsic radiation. Calculations show that with $\varepsilon_{1}=\varepsilon_{2}=0.8$ the error of this assumption does not exeeed 5% for small values of H / D (H is the distance from the crown to the surface of the bed, and D is the furnace diameter), and for the ratios $H / D=1,0-4,0$ used in practice this error does not exceed $1-2 \%$.

Then we have

$$
Q_{i n c_{1}}^{1-2}=E_{1} F_{1}\left(\varphi_{12}+\varphi_{13} \varphi_{32} r_{3}\right) .
$$

Surface 3, absorbing some of the radiant energy incident on it from surface 1, also radiates to surface 2 . Using the assumption above, we can write the following equation for the flux of thermal radiation incident on surface 2 from surface 3 , again for the case of single reflections:

$$
Q_{i n c_{1}^{3}}^{3-2}=E_{3} F_{3}\left(\varphi_{32} \div \varphi_{39} \varphi_{32} r_{3}\right) .
$$

Analogously, for the flux from surface 2 onto lateral surface 3 , again for single reflections, we have

$$
Q_{\mathrm{inc}, \frac{2}{2-2}}^{2-2}=E_{2} F_{2}\left(\varphi_{22}+\varphi_{23} \varphi_{32} r_{3}\right) .
$$

Now taking into account n reflections of the energy from surface 3 , we write the flux from surface 1 to surface 2 as
table 1. Resultant Flux of Thermal Radiation Absorbed by the Fluidized Bed

T_{4},	T_{2}, ${ }^{\prime} \mathrm{K}$	$T_{a,}{ }^{\circ} \mathrm{K}$	ε_{2}	H/D	;Resultant flux according to $\left[41, \mathrm{~W} / \mathrm{m}^{2}\right.$ esultant flux according to Eq . (14a), $\mathrm{W} / \mathrm{m}^{2}$										
					ε_{1}										
					0,1	0.2	0,3	0,4	0,5	0.6	0.7	0,8	0,9	1,0	
1223	573	773		1,0 2,5	7140 9163 9803 8840 8451	8511 1065 8845 8859 859	10916 1098 1987 8854 8859	11498 1339 8875 9855		14882 16034 9295 9572 592	16378 17291 9563 9708	17895 18597 98925 10032	19493 19874 10052 10194 101	20985 22343 1036 10395	
1673	973	1373	0,8	1,0 2,5	66966 8366 8467 87969 8795	70816 85972 84546 88647	75512 88614 85614 88532	80304 81397 8431 89125	85115 94134 86644 89545	89677 97377 87699 89985	99664 10067 88683 90424		104376 149738 990010 90971	108954 107344 90947 91072	0,8

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 23 \& 573 \& 773 \& 1,0
2,5 \& 2258
2487
1293
1257 \& 4461
4812
2455
2528 \& 6686
7157
3677
3788 \& \begin{tabular}{l}
8986 \\
9477 \\
4979 \\
5052 \\
\hline 9937
\end{tabular} \& 11196
\(\substack{11788 \\ 6142 \\ 6291}\)

62145 \& \begin{tabular}{c}
13381 \\
1317 \\
\hline 7849 \\
7514 \\
74298

 \&

15658 \\
16382 \\
8485 \\
8743 \\
874

 \&

17944 \\
188076 \\
\hline 8055 \\
10032 \\
\\
99105
\end{tabular} \& 21316

20871
11234
11156 \& 22791
$\begin{aligned} & 22996 \\ & 12334 \\ & 12381\end{aligned}$
124357 \\
\hline 1673 \& 973 \& 1373 \& \& (12315 \& 24621
27218
22274
22419 \& 37191
40919
3424
34519 \& 49337
593516
45416

45817 \& | 62145 |
| :--- |
| 6654 |
| 55936 |
| 57148 | \& 74298

79496
66973
68993 \& 92169
78939
79522 \& 1091055
80742
80678 \& \& (112892 $\begin{aligned} & 12859 \\ & 112998 \\ & 1\end{aligned}$ \\
\hline
\end{tabular}

$$
\begin{gather*}
Q_{\mathrm{inc}}^{1-2}=E_{1} F_{1}\left(\varphi_{12}+\varphi_{13} r_{3} \varphi_{32}+\varphi_{13} r_{3} \varphi_{32} r_{3} \varphi_{33}+\cdots+\varphi_{13} r_{3}^{n-1} \varphi_{33}^{n-1} \varphi_{32}\right), \\
Q_{\mathrm{inc}}^{1-2}=E_{1} F_{1}\left[\varphi_{12}+\varphi_{13} \varphi_{32} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right)\right] . \tag{2}
\end{gather*}
$$

Here $E_{1} F_{1} \varphi_{12}$ is the flux incident on surface 2 without reflections, and $E_{1} F_{1} \varphi_{13} \varphi_{32} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n}-1 \mathbf{r}_{3}^{n}\right)$ is the flux from surface 1 to surface 2 as a result of the n-th reflection from surface 3 (N is an arbitrarily large number).

Analogously, we can write the flux which returns to surface 1 after the n-th reflection from surface 3:

$$
Q_{i n c}^{1-1}=\varphi_{13} \varphi_{31} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right) .
$$

Part of the energy incident on surface 3 from surface 1 is absorbed by surface 3 in each reflection from it. This part of the energy is

$$
\begin{gathered}
Q_{\mathrm{abs}}^{1-3}=E_{1} F_{1} \varphi_{13}\left(1-r_{3}\right)+E_{1} F_{1} \varphi_{13} r_{3} \varphi_{33}\left(1-r_{3}\right)+\cdots+E_{1} F_{1} \varphi_{13}\left(1-r_{3}\right) \varphi_{33}^{n-1} r_{3}^{n} ; \\
Q_{\mathrm{abs}}^{1-3}=E_{1} F_{1} \varphi_{13} \frac{1-r_{3}}{r_{3}} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right) .
\end{gathered}
$$

Defining

$$
\frac{1-r_{3}}{r_{3}}=R_{3}
$$

we have

$$
Q_{\mathrm{abs}}^{1-3}=E_{1} F_{1} \varphi_{13} R_{3} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right) .
$$

We obviously have

$$
\begin{gathered}
\left(Q_{\mathrm{inc}}^{1-2}-Q_{1} \varphi_{12}\right)+Q_{i n c}^{1-1}+Q_{\mathrm{abs}}^{1-3}=Q_{1} \varphi_{13} \\
E_{1} F_{1} \varphi_{13} \varphi_{32} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right)+E_{1} F_{1} \varphi_{13} \varphi_{31} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right)+E_{1} F_{1} \varphi_{13} R_{3} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right)=E_{1} F_{1} \varphi_{13}
\end{gathered}
$$

and thus

$$
\begin{equation*}
\sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right)=\frac{1}{\varphi_{32}+\varphi_{31}+R_{3}} \tag{3}
\end{equation*}
$$

Substituting (3) into (2) and carrying out some simple manipulations, we find

$$
\begin{equation*}
Q_{\text {inc }}^{1-2}=E_{1} F_{1}\left(\varphi_{12}+\frac{\varphi_{13} \varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3}}\right) . \tag{4}
\end{equation*}
$$

The flux from surface 3 to surface 2 after the n-th reflection from surface 3 is

$$
\begin{gather*}
Q_{\mathrm{inc}}^{3-2}=E_{3} F_{3}\left(\varphi_{32}+\varphi_{33} r_{3} \varphi_{32}+\varphi_{33} r_{3} \varphi_{33} r_{3} \varphi_{32}+\cdots+\varphi_{32} \varphi_{33}^{n} r_{3}^{n}\right), \\
Q_{\mathrm{inc}}^{3-2}=E_{3} F_{3} \varphi_{32} \sum_{n=0}^{n=N}\left(\varphi_{33}^{n}+r_{3}^{n}\right) . \tag{5}
\end{gather*}
$$

Analogously, the flux from surface 3 to surface 1 , with the n-th reflection taken into account, is

$$
Q_{\mathrm{inc}}^{3-1}=E_{3} F_{3} \varphi_{32} \sum_{n=0}^{n=N}\left(\varphi_{33}^{n} r_{3}^{n}\right) .
$$

The absorbed energy is

We note that

$$
\begin{gathered}
Q_{\mathrm{abs}}^{3-3}=E_{3} F_{3} \varphi_{33}\left(1-r_{3}\right)+E_{3} F_{3} \varphi_{33} r_{3} \varphi_{33}\left(1-r_{3}\right)+\cdots \\
\cdots+E_{3} F_{3}\left(1-r_{3}\right) \varphi_{3}^{n} r_{3}^{n-1}, \\
Q_{\mathrm{abs}}^{3-3}=E_{3} F_{3}\left(1-r_{3}\right) \sum_{n=0}^{n=N}\left(\varphi_{33}^{n+1} r_{3}^{n}\right) .
\end{gathered}
$$

$$
\left(1-r_{3}\right) \sum_{n=0}^{n=N}\left(\varphi_{33}^{n+1} r_{3}^{n}\right)=\left(\frac{1-r_{3}}{r_{3}}\right) r_{3} \varphi_{33} \sum_{n=0}^{n=N}\left(\varphi_{33}^{n} r_{3}^{n}\right) .
$$

Obviously, we have

$$
Q_{\mathrm{inc}}^{3-2}+Q_{\mathrm{inc}}^{3-1}+Q_{\mathrm{abs}}^{3-3}=E_{3} F_{3}
$$

or

$$
E_{3} F_{3} \varphi_{32} \sum_{n=0}^{n=N}\left(\varphi_{33}^{n} r_{3}^{n}\right)+E_{3} F_{3} \varphi_{31} \sum_{n=0}^{n=N}\left(\varphi_{33}^{n} r_{3}^{n}\right)+E_{3} F_{3} R_{3} r_{3} \varphi_{33} \sum_{n=0}^{n=N}\left(\varphi_{33}^{n} r_{3}^{n}\right)=E_{3} F_{3}
$$

and thus

$$
\sum_{n=0}^{n=N}\left(\varphi_{33}^{n} r_{3}^{n}\right)=\frac{1}{\varphi_{32}+\varphi_{31}+R_{3} r_{3} \varphi_{33}} .
$$

We then have

$$
\begin{equation*}
Q_{\mathrm{inc}}^{3-2}=E_{3} F_{3} \frac{\varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3} r_{3} \varphi_{33}} . \tag{6}
\end{equation*}
$$

The flux from surface 2 to surface 2 as a result of the n-th reflection from surface 3 is

$$
Q_{\text {inc }}^{2-2}=E_{2} F_{2} \varphi_{23} r_{3} \varphi_{32}+E_{2} F_{2} \varphi_{23} r_{3} \varphi_{33} r_{3} \varphi_{32} I+\cdots+E_{2} F_{2} \varphi_{33}^{n-1} r_{3}^{n} \varphi_{23} \varphi_{32}
$$

or

$$
\begin{equation*}
Q_{\mathrm{inc}}^{2-2}=E_{2} F_{2} \varphi_{23} \varphi_{32} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right) \tag{7}
\end{equation*}
$$

Analogously, the flux from surface 2 to surface 1 as a result of the n-th reflection from surface 3 is

$$
\begin{equation*}
Q_{\mathrm{inc}}^{2-1}=E_{2} F_{2} \varphi_{23} \varphi_{31} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right) . \tag{8}
\end{equation*}
$$

The absorbed flux is

$$
Q_{\mathrm{abs}}^{2-3}=E_{2} F_{2}\left(1-r_{3}\right) \varphi_{23}+E_{2} F_{2} \varphi_{23} r_{3} \varphi_{33}\left(1-r_{3}\right)+\cdots+E_{2} F_{2} \varphi_{23}\left(1-r_{3}\right) \varphi_{33}^{n-1} r_{3}^{n-1}
$$

or

$$
\begin{equation*}
Q_{\mathrm{abs}}^{2-3}=E_{2} F_{2} \varphi_{23} R_{3} \sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right) \tag{9}
\end{equation*}
$$

We obviously have

$$
\begin{equation*}
Q_{\mathrm{inc}}^{2-2}+Q_{\mathrm{inc}}^{2-1}+Q_{\mathrm{abs}}^{2-3}=E_{2} F_{2} \varphi_{23} . \tag{10}
\end{equation*}
$$

Substituting (7)-(9) into (10), and carrying out certain simplifications, we find

$$
\sum_{n=1}^{n=N}\left(\varphi_{33}^{n-1} r_{3}^{n}\right)=\frac{1}{\varphi_{32}+\varphi_{31}+R_{3}}
$$

and thus

$$
Q_{\mathrm{inc}}^{2-2}=E_{2} F_{2} \frac{\varphi_{23} \varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3}}
$$

Taking into account the radiation from surface 2 to itself ($\varphi_{22} \neq 0$), we have

$$
\begin{equation*}
Q_{\text {inc }}^{2-2}=E_{2} F_{2} \frac{\varphi_{22}+\varphi_{23} \varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3}} . \tag{11}
\end{equation*}
$$

Accordingly, the total heat flux incident on surface 2 as a result of radiative heat transfer in a system of three surfaces filled with a transparent medium, with the n-th reflection from the lateral surface taken into account, is

$$
\begin{gather*}
Q_{2 \mathrm{inc}}=Q_{\mathrm{inc}}^{1-2}+Q_{\mathrm{inc}}^{2-2}+Q_{\mathrm{inc}}^{3-2}, \\
Q_{2 \mathrm{inc}}=E_{1} F_{1}\left(\varphi_{12}+\frac{\varphi_{13} \varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3}}\right)+E_{2} F_{2}\left(\varphi_{22}+\frac{\varphi_{23} \varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3}}\right)+E_{3} F_{3} \frac{\varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3} r_{3} \varphi_{33}} . \tag{12}
\end{gather*}
$$

Noting that the specific flux is $E_{2 i n c}=Q_{2 i n c} / F_{2}$, and that we have $d \varphi_{21} / \varphi_{12}=F_{1} / F_{2}$ and $\varphi_{23} / \varphi_{32}=F_{3} / F_{2}$, we find, from the reciprocity rule for angular coefficients,

$$
\begin{equation*}
E_{2_{\mathrm{R} 2}}=E_{1}\left(\varphi_{21}+\frac{\varphi_{21}}{\varphi_{12}} \cdot \frac{\varphi_{13} \varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3}}\right)+E_{2}\left(\varphi_{22}+\frac{\varphi_{23} \varphi_{32}}{\varphi_{32}+\varphi_{31}+R_{3}}\right)+E_{3} \frac{\varphi_{23}}{\varphi_{32}+\varphi_{31}+R_{3} r_{3} \varphi_{33}} . \tag{13}
\end{equation*}
$$

The resultant flux at surface 2 is

$$
E_{\mathrm{R} 2}=E_{2 \mathrm{inc}} \varepsilon_{2}-E_{2},
$$

so we have

$$
\begin{equation*}
E_{\mathrm{R} 2}=\left[E_{1}\left(\varphi_{12} \div \frac{\varphi_{13} \varphi_{32}}{\varphi_{32}+\varphi_{31} \div R_{3}} \cdot \frac{\varphi_{21}}{\varphi_{12}}\right) \div E_{2}\left(\varphi_{22} \div \frac{\varphi_{23} \varphi_{32}}{\varphi_{32} \div \varphi_{31}+R_{3}}\right) \div E_{3}-\frac{\varphi_{23}}{\varphi_{32} \div \varphi_{31}+R_{3} r_{3} \varphi_{33}}\right] \varepsilon_{2}-E_{2} . \tag{14}
\end{equation*}
$$

If

$$
F_{1}=F_{2}, \text { then } \varphi_{12}=\varphi_{21} ; \quad \varphi_{31}=\varphi_{33} ; \quad \varphi_{23}=\varphi_{13} .
$$

Assuming $\varphi_{22}=0$, we find

$$
\begin{equation*}
E_{\mathrm{R}^{2}}=\left[E_{1}\left(\varphi_{12} \div \frac{\varphi_{23} \varphi_{32}}{2 \varphi_{32}+R_{3}}\right) \div E_{2} \frac{\varphi_{23} \varphi_{32}}{2 \varphi_{32}+R_{3}} \div E_{3} \frac{\varphi_{23}}{2 \varphi_{32}+R_{3} r_{3} \varphi_{33}}\right] \varepsilon_{2}-E_{2} . \tag{14a}
\end{equation*}
$$

If $r_{3}=1$, then $E_{3}=0$, and the equation for $E_{R^{2}}$ becomes

$$
\begin{equation*}
E_{\mathrm{R} 2}=\varepsilon_{2}\left(E_{1} \frac{1 \div \varphi_{12}}{2}+E_{2} \frac{\varphi_{23} \varphi_{32}}{2}\right)-E_{2} . \tag{14b}
\end{equation*}
$$

If $\mathrm{r}_{3}=0$, then

$$
\begin{equation*}
E_{\mathrm{R} 2}=\varepsilon_{2}\left(E_{1} \varphi_{12}-E_{3} \varphi_{23}\right)-E_{2} . \tag{14c}
\end{equation*}
$$

We have thus derived quite simple equations for the specific flux of thermal radiation absorbed by the fluidized bed during radiative heating.

If the system is filled with an absorbing medium, its influence can be taken into account by a procedure analogous to that of [4].

It is interesting to compare the fluxes calculated from Eq. (14a) with those calculated from the equations of [4].

Table 1 shows the fluxes calculated from both equations for a system of a circular cylinder for the values $\mathrm{T}_{1}=1223^{\circ} \mathrm{K}, \mathrm{T}_{2}=573^{\circ} \mathrm{K}, \mathrm{T}_{3}=773^{\circ} \mathrm{K}$, and $\varepsilon_{3}=0.8$ for two values of $\mathrm{H} / \mathrm{D}, 1.0$ and 2.5 ; and for $\mathrm{T}_{1}=1673^{\circ} \mathrm{K}$, $\mathrm{T}_{2}=973^{\circ} \mathrm{K}$, and $\mathrm{T}_{3}=1373^{\circ} \mathrm{K}$, with the same values of H / D and with ε_{1} and ε_{2} varied from 0.1 to 1.0. Figure 2 shows a curve of the resultant heat flux as a function of the emissivity ε_{1} and the emissivity of the heatabsorbing surface, ε_{2}. The numerical value of the emissivity of the surface of a fluidized bed can be determined from the equation given in [5].

In conclusion, we should point out that the calculations carried out on the basis of these equations agree satisfactorily with the experimental data of [6-8]. For example, with $\varepsilon_{1}=\varepsilon_{3}=0.8, \varepsilon_{2}=0.9, T_{1}=$ $1223{ }^{\circ} \mathrm{K}, \mathrm{T}_{2}=575^{\circ} \mathrm{K}, \mathrm{T}_{3}=773^{\circ} \mathrm{K}$, and $\mathrm{H} / \mathrm{D}=1.0$ and 1.55 , the specific fluxes found in the experiments of [8] are 22.6 and $14.7 \mathrm{~kW} / \mathrm{m}^{2}$, while those calculated from Eq. (14a) are 20.9 and $15.1 \mathrm{~kW} / \mathrm{m}^{2}$.
$Q_{i n c_{1}}^{i-k}$, flux of thermal radiation from surface i to surface k, with a single reflection from each surface in the system taken into account; $Q_{i n c}^{i}-k$, the same, with an infinite number of reflections taken into account; φ_{l}, angular coefficient from surface i to surface $k ; r_{i}$, reflectivity of surface $i ; \varepsilon_{i}$, emissivity of surface $i ; Q_{i}$, heat flux of intrinsic radiation of surface $i ; E_{i}$, intrinsic radiation of surface $i ; F_{i}$, area of surface i.

LITERATURE CITED

1. L. K. Vasanova and N. I. Syromyatnikov, Khim. Prom-st', No. 11 (1963).
2. N. I. Syromyatnikov, L. K. Vasanova, and Yu. I. Shimanskii, in: Heat and Mass Transfer [in Russian], Vol. 3, Gosénergoizdat (1963).
3. G. P. Ivantsov, Works of the Scientific and Engineering Society Chernaya Metallurgiya [in Russian], Vol. 7, Metallurgizdat (1956).
4. D. V. Budrin, in: Heat Transfer and Fuel Economy in Metallurgical Furnaces. Works of the S. M. Kirov Ural Polytechnical Institute [in Russian] (1951).
5. O. O. Sverdlov, Dopovidi Akad. Nauk UkrSSR, No. 8 (1971).
6. A. A. Sverdlov and K. E. Makhorin, Khim. Prom-st, No. 7 (1968).
7. A. A. Sverdlov, K. E. Makhorin, A. M. Glukhomanyuk, B. A. Lipkind, G. L. Kustova, and A. V. Zykova, Ispol'zovanie Gaza v Narodnom Khozyaistve, No. 8 (1970).
8. A. A. Sverdlov, Khim. Prom-st', No. 1 (1974).
